domingo, 18 de abril de 2010

Mitocôndria

As mitocôndrias (do grego mito: filamento e chondrion: grânulo) estão presentes no citoplasma das células eucarióticas, sendo caracterizadas por uma série de propriedades morfológicas, bioquímicas e funcionais.Geralmente, são estruturas cilíndricas com aproximadamente 0,5micrômetros de diâmetro e vários micrômetros de comprimento. Uma célula hepática normal pode conter de 1.000 a 1.600 mitocôndrias, enquanto alguns ovócitos podem conter até 300.000. Microfilmagens em intervalos de células vivas mostram que as mitocôndrias são organelas notavelmente móveis e plásticas, mudando constantemente suas formas e mesmo fundindo-se umas com as outras e se separando novamente. Possuem organização estrutural e composição lipoprotéica características, e contêm um grande número de enzimas e coenzimas que participam das reações de transformação da energia celular.




A mitocôndria de acordo com a figura acima é organizada em:

Matriz: a matriz contêm uma mistura altamente concentrada de centenas de enzimas, incluindo aquelas necessárias à oxidação do piruvato e ácidos graxos e para o ciclo de Krebs. A matriz contêm também várias cópias do DNA mitocondrial, ribossomos mitocondriais essenciais, RNAt, e várias enzimas requeridas para expressão dos genes mitocondriais. Membrana Interna: a membrana interna é desbobrada em numerosas cristas que aumentam grandemente a sua área superficial total. Ela contêm proteínas com três tipos de funções: 1. aquelas que conduzem as reações de oxidação da cadeia respiratória 2. um complexo enzimático chamado ATPsintetase, que produz ATP na matriz 3. proteínas transportadoras específicas, que regulam a passagem para dentro e fora da matriz. Uma vez que um gradiente eletroquímico é estabelecido, através dessa membrana pela cadeia respiratória, para direcionar a ATPsintetase, é importante que a membrana seja impermeável a maioria dos pequenos íons. Membrana Externa: devido ao fato de conter uma grande proteína formadora de canais (chamada de porina), a membrana externa é permeável a todas as moléculas de 5.000daltons ou menos. Outras proteínas existentes nesta membrana incluem as enzimas envolvidas na síntese de lipídeos mitocondriais e enzimas que convertem substratos lipídicos em formas que possam ser subseqüentemente metabolizados na matriz. Espaço Intermembrana: esse espaço contêm várias enzimas que utilizam o ATP proveniente da matriz para fosforilar outros nucleotídeos.

Função da mitocôndria:

A mitocôndria realiza a maior parte das oxidações celulares e produz a massa de ATP ( energia celular) das células animais. Na mitocôndria o piruvato e os ácidos graxos são convertidos em acetil-CoA que são oxidados em CO2, através do ciclo de Krebs (ciclo do ácido cítrico). Grandes quantidades de NADH e FADH2 são produzidas por essas reações de oxidação. A energia disonível, pela combinação do oxigênio com os elétrons reativos levados pelo NADH e pelo FADH2, é regulada por uma cadeia transportadora de elétrons na membrana mitocondrial interna denominada de cadeia respiratória.

A cadeia respiratória bombeia prótons ( H+) para fora da matriz para criar um gradiente eletroquímico de hidrogênio transmembrana. O gradiente transmembrana, por sua vez, é utilizada para sintetizar ATP e para dirigir o transporte ativo de metabólitos específicos através da membrana mitocondrial interna. A combinação dessas reações é responsável por uma eficiente troca ATP-ADP entre a mitocôndria e o citosol de tal forma que o ATP pode ser usado para prover muitas das reações celulares dependentes de energia.

Retículo endoplasmático liso e retículo endoplasmático rugoso

O Retículo Endoplasmático, imaginando uma fábrica, poderia representar os corredores ou as esteiras onde os produtos produzidos são "despejados". Ele é práticamente um "organóide multiuso".Tem como principais funções o transporte de materiais (substâncias) pela célula e também o armazenamento destes materiais em dilatações (como se fossem pequenos armazéns). Além disto, o retículo pode produzir substâncias, como certos lipídios, que são produzidos no retículo liso de células do ovário humano

O retículo endoplasmático é dividido em dois tipos: o retículo endoplasmático liso e o retículo endoplasmático rugoso (também chamado de ergastoplasma). A diferença entre os dois é simples, o rugoso, em sua parede externa, possui ribossomos, que são pequenos organóides fabricantes de proteínas. O liso, não possui estes ribossomos (por isso ele chama liso).

Essa organela é bem difundida na célula, em alguns casos, ela fica aderida à membrana do núcleo (chamada carioteca).


Retículo Endoplasmático Liso - REL

As células que possuem REL mais desenvolvido realizam intensa atividade de síntese de esteróides, colesterol e triglicérides, armazenam glicogênio ou possuem atividade de desintoxicação (ex.: hepatócito). As enzimas necessárias ao metabolismo de lipídios e açúcares estão associadas à membrana do REL ou em seu lume. Além disso, o REL tem importante função no controle do Ca2+ intracelular. Nas fibras musculares estriadas, onde a liberação de Ca2+ para o citossol é essencial para o mecanismo de contração das miofibrilas, mecanismos ativos de transporte associados à membrana do REL possibilitam a rápida movimentação do Ca2+ para fora e para dentro de suas cisternas.

Retículo endoplasmático Rugoso - RER

O é composto por uma rede tridimensional de túbulos e cisternas interconectados, que vai desde a membrana nuclear (a cisterna do RE é contínua com a cisterna perinuclear) até a membrana plasmática. É dividido em dois setores: RERugoso - com poliribossomas aderidos à face citosólica, e RELiso - que além de não possuir polirribossomas aderidos, apresenta diferente composição protéica e enzimática de sua membrana e conteúdo.

A ligação de polirribossomas à superfície citosólica do RER é feita através de proteínas integrais:

* Docking protein (partícula receptora de reconhecimento de sinal)
* Riboforinas I e II (proteínas receptoras do ribossoma)
* Proteína do Poro

A presença de polirribossomas no RER possibilita sua função: síntese de proteínas. Por isto ele e tão desenvolvido em células com intensa síntese protéica, destinada à exportação ou a organelas com membrana. Além disso, o RER também participa de modificações pós-traducionais protéicas: sulfatação, pregueamento e glicosilação.

Complexo de Golgi




O nome Golgi provém de seu descobridor, Camilo Golgi, um médico histologista italiano que viveu entre 1843 e 1926.

O complexo de Golgi está presente em quase todas as células eucarióticas (núcleo centralizado), e é formado por várias bolsas achatadas, dispostas uma ao lado da outra. Essas bolsas servem para receber proteínas ribossomais em forma de vesículas, provenientes do retículo endoplasmático. Dentro da bolsa, essas vesículas são processadas, transformadas e enviadas para vários lugares da célula.

Esta organela aparece mais em células secretoras de substâncias, como Pâncreas, Hipófise, Tireóide, células presentes no intestino que geram o muco intestinal, etc.

Também é responsável por parte da formação das lamelas médias (paredes celulares) das células vegetais, produção de lisossomos (organelas que reciclam materiais da própria célula) e formação do acrossomo dos espermatozóides (a “cabeça” do espermatozóide, que contém enzimas digestoras, que facilitarão na entrada ao óvulo).

Ribossosmos




Os ribossomos são grânulos livres imersos no hialoplasma das células procarióticas e eucarióticas e também aderidos ao retículo endoplasmático, recebendo a denominação de retículo granular. Quando participam da síntese celular, essas estruturas permanecem agrupadas ao filamento de RNA mensageiro, formando os polissomos.

São formados a partir de duas subunidades: uma maior e outra menor, originadas da combinação de ácido nucléico ribossomal (RNAr) à uma enorme quantidade de proteínas, cerca de 50 tipos protéicos diferentes.

Fundamentais estruturas do controle metabólico, o ribossomo somente funciona quando as subunidades se fusionam.

Existem, na sua subunidade maior, dois sítios: um A e outro P (A – aminoacil e um P - peptidil) receptivos ao RNA transportador (RNAt), substância carreadora dos aminoácidos (unidade básica das proteínas).

A atuação ribossomal no mecanismo de tradução celular se divide em três estágios: o inicial, codificado pelo códon AUG (sequência de bases pirimídicas), o estágio de alongamento (acréscimo de aminoiácidos por ligações peptídicas) e estágio terminal codificado por um códon de parada (códon - Stop).

Krukemberghe Fonseca
Graduado em Biologia

Centríolos




Os centríolos são organelas citoplasmáticas comum nas células eucariontes, ficam localizados nas proximidades do núcleo (região denominada de centrossomo) onde estão dispostos aos pares e perpendicularmente um ao outro.

Essas estruturas possuem organização bem simples, porém indispensáveis ao funcionamento de uma célula, sendo formadas por um conjunto de microtúbulos (constituídos basicamente por proteínas globulares alfa e beta) em arranjo padrão: nove grupos, cada um contendo três microtúbulos interligados por proteínas denominadas dineínas.

Entre as funções desempenhadas, destacam-se:

• Constituição do fuso aromático durante o mecanismo de divisão por mitose e meiose, deslocando-se cada um para extremos opostos da célula, emitindo projeções em formação de feixes filamentosos que se unem à região do centrômero dos cromossomos, que proporcionalmente realizam a separação dos cromossomos homólogos ou das cromátides irmãs.

• Formação dos cílios e flagelos, responsáveis por inúmeras atividades, dependendo do tipo de organismo (unicelular ou multicelular), seja:

- Uma alga ou protozoário, nos quais os centríolos desenvolvem pequeninos cílios ou flagelos, propiciando além da locomoção a absorção de partículas.

- Ou também presentes em algumas células especializadas do corpo humano: no revestimento interno da traquéia (tecido epitelial pseudo estratificado cilíndrico ciliado) removendo impurezas do sistema respiratório; integração de cílios na superfície das células da tuba uterina (transportando o óvulo até o útero); e compondo o flagelo dos gametas masculinos (os espermatozóides).

Como os cílios e os flagelos estão geralmente associados ao mecanismo de locomoção, necessitam de eficácia para gerar propulsão e deslocamento. Em conseqüência, a estruturação dos microtúbulos situados na base dos centríolos (chamada de corpúsculo basal) possui uma diferenciação. O arranjo, tanto dos cílios quanto dos flagelos, requer de um par de microtúbulos centrais, aumentando a resistência do anexo locomotor.

Membrana Plasmática




A membrana celular, também conhecida por plasmalema, é a estrutura que delimita todas as células vivas, tanto as procarióticas como as eucarióticas. Ela estabelece a fronteira entre o meio intra-celular, o citoplasma, e o meio extracelular, que pode ser a matriz dos diversos tecidos.

Aparece em eletromicrografias como duas linhas escuras separadas por uma faixa central clara, com uma espessura de 7 a 10 nm. Esta estrutura trilaminar encontra-se em todas as membranas encontradas nas células, sendo por isso chamada de unidade de membrana ou membrana unitária.

A membrana celular não é estanque, mas uma “porta” seletiva que a célula usa para captar os elementos do meio exterior que lhe são necessários para o seu metabolismo e para libertar as substâncias que a célula produz e que devem ser enviadas para o exterior (sejam elas produtos de excreção, das quais deve se libertar, ou secreções que a célula utiliza para várias funções relacionadas com o meio).

Composição Química

Açúcares

Todas as membranas plasmáticas celulares são constituídas predominantemente por fosfolipídeos e proteínas em proporções variáveis e uma pequena fração de açúcares, na forma de oligossacarídeos.

Exteriormente, na grande maioria das células animais, a membrana plasmática apresenta uma camada rica em glicídeos: o glicocálix ou glicocálice.

Lipídios

Os lipídios presentes nas membranas celulares pertencem predominantemente ao grupo dos fosfolipídeos. Estas moléculas são formadas pela união de três grupos de moléculas menores: um álcool, geralmente o glicerol, duas moléculas de ácidos graxos e um grupo fosfato, que pode conter ou não uma segunda molécula de álcool.

A estrutura das membranas deve-se primariamente a essa camada dupla de fosfolipídios. Esses lipídios são moléculas longas com uma extremidade hidrofílica (tem afinidade com a água) e a cadeia hidrofóbica (não tem afinidade com a água). O grupo fosfato está situado nas lâminas externas da estrutura trilaminar. A parte situada entre as lâminas fosfatadas é composta pelas cadeias hidrofóbicas.

As membranas animais possuem ainda o colesterol, e as células vegetais possuem outros esteróis, importantes para o controle da fluidez das membranas. Em certa temperatura, quanto maior a concentração de esteróis, menos fluida será a membrana. As células procariontes, salvo algumas exceções, não possuem esteróis.

Proteínas

As proteínas são os principais componentes funcionais das membranas celulares.

A maioria das proteínas da membrana celular está mergulhada na camada dupla do fosfolipídios, interrompendo sua continuidade, são as proteínas integrais. Outras, as proteínas periféricas, estão aderentes às extremidades de proteínas integrais. Algumas proteínas atuam no transporte de substâncias para dentro ou para fora da célula. Entre estas, encontram-se glicoproteínas (proteínas ligadas a carboidratos).

Algumas destas proteínas formam conexões, os fibronexos, entre o citoplasma e macromoléculas da matriz extracelular.

Os grupos sangüíneos A-B-O, M-N e Rh, bem como fatores HLA, são antígenos da superfície externa da membrana.


Principais características da membrana celular

A membrana celular é responsável pela manutenção de uma substancia do meio intracelular, que é diferente do meio extracelular e pela recepção de nutrientes e sinais químicos do meio extracelular. Para o funcionamento normal e regular das células, deve haver a seleção das substâncias que entram e o impedimento da entrada de partículas indesejáveis, ou ainda, a eliminação das que se encontram no citoplasma. Por ser o componente celular mais externo e possuir receptores específicos, a membrana tem a capacidade de reconhecer outras células e diversos tipos de moléculas, como hormônios.

As membranas celulares possuem mecanismos de adesão, de vedação do espaço intercelular e de comunicação entre as células. Os microvilos ou microvilosidades são muito freqüentes e aumentam a superfície celular.

Não confundir a membrana celular com a parede celular (das células vegetais, por exemplo), que tem uma função principalmente de proteção mecânica da célula. Devido à membrana citoplasmática não ser muito forte, as plantas possuem a parede celular, que é mais resistente.

A membrana celular é uma camada fina e altamente estruturada de moléculas de lípidos e proteínas, organizadas de forma a manter o potencial eléctrico da célula e a controlar o que entra e sai da célula (permeabilidade selectiva da membrana). Sua estrutura só vagamente pode ser verificada com um microscópio de transmissão electrônica. Muitas vezes, esta membrana contém proteínas receptoras de moléculas específicas, os Receptores de membrana, que servem para regular o comportamento da célula e, nos organismos multicelulares, a sua organização em tecidos (ou em colónias).

Por outro lado, a membrana celular não é, nem um corpo rígido, nem homogêneo – é muitas vezes descrita como um fluido bidimensional e tem a capacidade de mudar de forma e invaginar-se para o interior da célula, formando alguns dos seus organelos.

A matriz fosfolipídica da membrana foi pela primeira vez postulada em 1825 por Gorter e Grendal; no entanto, só em 1895, Charles Overton deu força a esta teoria, tendo observado que a membrana celular apenas deixava passar algumas substâncias, todas lipossolúveis.

Transporte através das membranas

Mesmo nas membranas não biológicas, como as de plástico ou celulose, há moléculas que as conseguem atravessar, em determinadas condições. Dependendo das propriedades da membrana e das moléculas (ou átomos ou íons) em presença, o transporte através das membranas classifica-se em:

  • Transporte passivo – quando não envolve o consumo de energia do sistema, sendo utilizada apenas a energia cinética das moléculas; a movimentação dá-se a favor do gradiente de concentração (do meio hipertónico para o meio hipotónico).
  • Transporte ativo – quando o transporte das moléculas envolve a utilização de energia pelo sistema; no caso da célula viva, a energia utilizada é na forma de Adenosina tri-fosfato (ATP); a movimentação das substâncias dá-se contra o gradiente de concentração, ou seja, do meio hipotónico para o hipertónico.

Nota: o transporte pode ainda ser classificado em mediado, envolve permeases (transporte ativo e difusão facilitada), e não-mediado (difusão directa).

Transporte passivo

O interior das células – o citoplasma – é basicamente uma solução aquosa de sais e substâncias orgânicas. O transporte passivo de substâncias na célula pode ser realizado através de difusão ou por osmose. A difusão se dá quando a concentração interna de certa substância é menor que a externa, e as particulas tendem a entrar na célula. Quando a concentração interna é maior, as substâncias tendem a sair. A difusão pode ser auxiliada por enzimas permeases sendo classificada Difusão facilitada. Quando não há ação de enzimas, é chamada difusão simples

Quando a concentração externa de substâncias é maior que a interna, parte do líquido citoplasmático tende a sair fazendo com que a célula murche - plasmólise. Quando a concentração interna é maior, o líquido do meio externo tende a entrar na célula, dilatando-a - Turgência, entretanto existe ainda a situação em que a célula murcha e depois por motivos externos volta a obter sua quantidade normal de água,então esse fato é chamado de Deplasmolise, ou seja, uma plasmolise inversa. Neste caso, se a diferença de concentração for muito grande, pode acontecer que a célula estoure. As células que possuem vacúolos são mais resistentes à diferença de concentração, pois estas organelas, além de outras funções, agem retendo líquido.

Transporte ativo

O transporte ativo através da membrana celular é primariamente realizado pelas enzimas ATPases, como a importante bomba de sódio e potássio, que tem função de manter o potencial eletroquímico das células.

Muitas células possuem uma ATPase do cálcio que opera as concentrações intracelulares baixas de cálcio e controla a concentração normal (ou de reserva) deste importante mensageiro secundário. Uma outra enzima actua quando a concentração de cálcio sobe demasiadamente. Isto mostra que um íon pode ser transportado por diferentes enzimas, que não se encontram permanentemente ativas.

Há ainda dois processos em que, não apenas moléculas específicas, mas a própria estrutura da membrana celular é envolvida no transporte de matéria (principalmente de grandes moléculas) para dentro e para fora da célula:

  • endocitose – em que a membrana celular envolve partículas ou fluido do exterior - fagocitose ou pinocitose - e a transporta para dentro, na forma duma vesícula; e
  • exocitose – em que uma vesícula contendo material que deve ser expelido se une à membrana celular, que depois expele o seu conteúdo.